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Abstraet We repot? a numerical study of the electronic Structure of a simple model for 
amorphous solids. The geometry of the model is described by continuous random networks 
based on the honeycomb lallice: the electronic structure is computed from simple tight-binding 
Hamiltonians. The density of states and the lccalidon propcldes of eigenstates have been 
computed for an ideal random network and systems containing dangling bonds. Models including 
hybridization and alloy effeck have been studied, both leading to U e  formation of impurity 
bands. The origin and the physical implications of these impurity bands are discussed. 

1. Introduction 

Continuous random networks (CRNS) are a model widely used to describe the geometry of 
both elemen- and multicomponent amorphous solids with a strong covalent chamcter of 
the chemical bond. In a CRN, each element retains its coordination number Z defined by the 
8N d e .  Deviations from the bond lengths and bond angles observed in the corresponding 
crystalline compounds are usually small, whereas no long-range topological order can be 
found. The CRN concept was introduced by Zachariasen [l], the first random network 
fulfilling the conditions described above was constructed by Polk to describe the geomehy 
of amorphous silicon 121. Recent work on CRNs covers the construction and relaxation of 
accurate models for a:Si and the computation of the electronic structure based on tight- 
binding Hamiltonians [3]. Systems with approximately lo5 atoms have been generated and 
studied by the equation-of-motion method to compute the density of states and the electric 
conductivity [4]. 

As the translational invariance of crystalline compounds is destroyed in their amorphous 
counterparts, the eigenstates cannot be described in terms of BIoch functions. If the disorder 
present in a disordered system is strong enough, localization of all eigenstates due to disorder 
will occur [5]. For systems with a small degree of disorder such as CRNS, the density of 
states can be subdivided into regions containing localized states and regions dominated 
by extended states, separated by mobility edges [6]. The question of electron localization 
in models of amorphous solids has been addressed by Nichols and Winer [7] for a:%. 
The present authors have studied electron localization for various Hamiltonians in two 
dimensions [8,9] and for the distorted diamond lattice with Hamiltonians appropriate for 
a:Si, a:Ge and the hypothetical a:C [9,101. 

t Present address: Physical Chemistry Laboratory, University of Oxford, South parks Road, Oxford OX1 3Q2, 
UK. 
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In this article we study simple models of amorphous solids to investigate the influence 
of dangling bonds, hybridization and alloy effects. We expect the effects observed for these 
highly simplified models to be of general relevance to amorphous systems, regardless of 
the dimension. Any detailed comparison to experimental data is out reach for systems as 
highly simplified as those presented here, although a parametrization corresponding to boron 
nitride has been used for the binary alloy. None of the properties computed is unique to 
two-dimensional systems; however, the generation of dangling bonds is much simpler for 
the hexagonal than for the diamond lattice. In this article we present the construction of a 
model system in two dimensions, based on the honeycomb lattice, that allows the description 
of both ideal CRNS free of defects and of CRNS containing dangling bonds as one of the 
most important types of defect present in amorphous solids. The electronic structure will 
be described by a simple tight-binding Hamiltonian with one basis function centred on each 
atom, later to be extended to include hybridization effects and to allow for the description 
of multicomponent systems, in this article a simple binary alloy. The article is organized 
as follows. In the next section, we present the method used to construct CRNS and the 
procedures to compute the density of states and the localization properties of the system. 
As four different types of model have been studied, the details of each model, including the 
Hamiltonian, the results obtained and a brief discussion will be presented in four distinct 
subsequent sections. Conclusions are derived in the last section. 

2. Methods 

Whereas the first CRNs had been built by hand [Z], the construction of CRNs utilizing a 
computer was quickly recognized as a powerful tool to study the geometry of models of 
amorphous systems [ 111. In this work, we use a simple vacancy model similar to the work 
of Duf@ et a1 [ll].  We have refrained from implementing one of the more sophisticated 
algorithms appropriate for the study of a:Si ([3], 141, to mention a few) because the main 
purpose of the models presented in this work is not the accurate simulation of an existing 
compound, but the description of basic phenomena by highly simplified models. 

To conshuct a CRN on the honeycomb lattice, the following procedure is repeated until 
a given concentration p of defects has been created choose an atom at random; eliminate 
this atom and one of its three neighbours, again chosen at random. The double vacancy 
constructed this way is surrounded by four dangling bonds. From these four danging bonds, 
two covalent bonds are created in such a way that a structure that used to contain four six- 
membered rings centred around the double vacancy is now replaced by two five-membered 
rings and one eight-membered ring. The creation of rings with less than five members 
is not allowed. Care has been taken not to create double bonds, small rings or large 
clusters of vacancies. In practice, these restrictions allow the construction of CRNS with a 
concentration of defects up to 0.1. The concentration p of double vacancies serves as the 
disorder parameter of the system. Cyclic boundary conditions have been imposed. A CRN 
created by the algorithm described above is presented in figure l(a). 

In a similar way, a random network containing dangling bonds as defects can be 
constructed. Again, an atom is chosen at randon and eliminated, leaving three dangling 
bonds around a single vacancy. Out of these three bonds, two are reconnected at random, 
leaving one dangling bond. So three six-membered rings around a vacancy have been 
replaced by a five-membered and a nine-membered ring. A lattice resulting from this 
procedure is shown in figure l(b). Both types of random network contain odd-membered 
rings, which have a crucial effect on the electronic structure 1121: the lattice is not bipartite 
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Figure 1. CRNS constructed from the honeycomb lanice: (a) an ideal random network @) a 
system cnntaining dangling bonds. 

like the ideal honeycomb lattice; the density of states is asymmetric, i.e. at half-filling the 
particle-hole symmetry has been broken. As the sign of eigenstates close to the upper 
band edge cannot vary from site to site any longer, this phenomenon is called frustration in 
analogy to spin systems with the same topology. Random networks based on the hexagonal 
lattice may also be created using bond flipping [I31 or dislocation processes [ 141. 

For all models, a simple tight-binding Hamiltonian 

is used to describe the electronic structure on top of the CRN. The operators and cia create 
and annihilate atomic orbitals localized at site i. To make a distinction between different 
basis functions localized at the same site, the additional index a has been introduced. si. 
is the site energy of orbital lia), the hopping matrix element K a j b  is non-zero for nearest 
neighbours only. To solve the large sparse eigenvalue problems originating frum this tight- 
binding Hamiltonian, a Lanczos algorithm bas been used 1151. 

To decide about the localized or extended nature of eigenstates. we use the small- 
decoupling version [8] of the method of Thouless, Edwards and Licciardello 1161, 
abbreviated to EL, in connection with a scding principle. As details of the method used 
can be found in [8] and [IO], we will only give a brief outline here. EL were able to 
show that the energy shift A E  caused by a change in boundary conditions is related to the 
conductance g by 

where L denotes the system length, SE the average level spacing and p the disorder 
parmeter. Following the scaling theory of localization [ 171, the eigenstates within an energy 
interval for a given degree of disorder are identified as being localized if g ( L )  decreases with 
increasing L. whereas if g(L) increases with increasing L,  the eigenfunctions are extended. 
A E  and 6E are usually taken as geometric averages within a certain energy interval. The 
TEL method will be illustrated in section 6 for the most complicated pattern of mobility 
edges studied in this work, enabling a judgment about the quality of the determination of 
localization properties. 

3. The ideal random network 

As a reference system, we have studied the ideal CRN without any dangling bonds. A set 
of orbitals centred at the sites of the CRN is used as the basis set, the interaction has been 
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set to a constant for nearest neighbours, with V;:=jb = V;:, = V = -4. All ei have been 
set to zero, so the disorder is of topological nature only. Systems exhibiting the vacancy 
concentrations p = 0.02, p = 0.04 and p = 0.08 have been studied for models containing 
1008 (R = 120). 1792 (R = 39), 2800 (R = 16) and 4032 ( R  = 6) atoms, where R denotes 
the minimum number of realizations performed for each system size. For the last two 
concentrations, additional calculations have been performed for systems containing 5376 
atoms in the ideal random network ( R  = 5). 

The density of states (DOS) is presented in figure 2; energy intervals containing localized 
wavefunctions according to the m analysis have been shaded. The DOS is asymmetric 
even at a vacancy concentration as low as p = 0.02, but there is no evidence for localized 
eigenstates in any of the energy intervals. Remainders of the logarithmic singularities of 
the crystalline honeycomb lattice can be observed at E = ii. With increasing vacancy 
concentration, localized states are formed at the upper band edge, accompanied by a 
decreasing DOS. An interesting phenomenon can be observed at p = 0.04: the formation of 
an interval of localized states at the Fermi level, favoured by the small density of states at 
E p .  At p = 0.02, the amount of disorder is too small to create localized states, whereas at 
p = 0.08 the DOS is large enough to suppress localization despite the increasing degree of 
disorder, a phenomenon also observed in models of a:Si [ 101. It should be noted that for 
all values of p studied the conductance values at EF are very small and comparable to that 
at the band edge, so Fermi-level localization cannot be ruled out completely for p values 
different from p = 0.04. 

Th Kosiowski and W von Niessen 
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Figure 2. The ws of the ideal random network for 
three differen! vacancy concentrations p .  Energy is in 
units of I/Z; Dos is in arbitmy units. Localized regions 
have been shad&, the solid line indicates Lhe Fermi 
level. 

Figure 3. The DOS of the hybridization model for 
three different vacancy ccncentnticns p .  Energy is in 
electronvolts; DOS Is in arbitnry units. 

A discussion of the localization properties of eigenstates in two dimensions cannot be 
complete without reference to the scaling theory of localization [17], which predicts the 
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localization of all eigenstates in two dimensions. Supported by numerical calculations for 
the Anderson model [NI, there are considerable doubts whether the scaling theory holds for 
systems with topological disorder such as the quantum percolation problem 120.21, 191; for 
a brief review on qUanNm percolation and the opposite point of view see [22]. For CRNS 
with a constant number Z of nearest neighbours and uniform 6i = 0 there is a simple proof 
that at least one extended eigenstate exists regardless of the Euclidian dimension. Writing 
down the eigenvalue equation (1) for an arbibary row i of the Hamiltonian matrix 

z 
- E&, - V a,, = 0 

j=I 
(3) 

it is obvious that (3) is fulfilled by E = - 2 V  and a = (al, a*, a3, . . .) = ( I ,  1, 1,. . .) for 
all i. According to the the theorem of Hadamard and Gershgorin, -2V is a lower bound 
to the spectrum of H, so the existence of an extended eigenstate at the lower band edge can 
be proved. It is interesting to note that the lower band edge does not erode with increasing 
p ,  so the features of the lowest eigenstate are unlikely to be singular. 

4. Dangling bonds 

The dangling-bond CRN has been studied for vacancy concenbations of p = 0.02, p = 0.04 
and p = 0.08. To perform the E L  analysis, the dimensionless conductance has been 
computed for systems containing 1008 ( R  = 83). 1792 ( R  = 28). 2800 ( R  = 12) and 4032 
(R = 6) atoms. In addition, for p = 0.04, a 5376-atom system has been studied ( R  = 5). 
We have used the Hamiltonian described in the preceding sections. The DOS is very similar 
to the DOS of the ideal CRN, so it is not plotted here. The major difference can be observed 
at the lower band edge, which now erodes with increasing p ,  As Z is not constant for Ibis 
type of network, this behaviour is not surprising. Equation (3) is no longer fulfilled by the 
solution given above. Localized states can be observed at the upper band edge for p = 0.04 
and p = 0.08, covering about the same region of the spectrum as for the ideal CRN. No 
localized states can be detected at the lower band edge. So in contrast to the introduction 
of a distancedependent V [SI, the creation of dangling bonds is not sufficient to induce 
localization. No localized states can be detected around the Fermi level. Again, the g value 
computed at EF for larger vacancy concentrations has the same order of magnitude as the 
g value found at the upper band edge, so localization cannot be ruled out in the middle of 
the band. 

5. Hybridization 

To study hybridization effects, we used a basis set of s and p orbitals on each atom. The 
cis parameter, defining the site energy of the s orbital at site i, has been set to zero; the ciP 
parameter has been set to 7.20 eV. The energy difference is the same as used for the tight- 
binding description of Si 1231. The K0jb hopping matrix elements are computed from the 
Slater-Koster [24] formulae, the following parameters have been chosen: V,,, = -2.71 eV, 
Vspr = 3.40 eV, V,, = 6.07 eV and V,, = -1.45 eV. All hopping-matrix elements are 
independent of the interatomic distance. They are equal to of the Harrison parameters for 
Si taking into account the reduction of the coordination number from four (diamond lattice) 
to three (hexagonal lattice). The CRN has not been relaxed, so an additional off-diagonal 
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disorder has been introduced, which results from the non-uniformity of the bond-angle 
distribution. 

Again, the density of states and localization properties have been computed for p = 0.02, 
p = 0.04 and p = 0.08. The following system sizes have been studied: 336 atoms 
( R  = 87). 448 atoms ( R  = 49). 576 atoms ( R  = 29) and 680 atoms ( R  = 21). The results 
can be observed for the CRN containing dangling bonds. The Dos is plotted in figure 3. The 
valence band exhibits a shallow minimum at -10 eV, disappearing with increasing vacancy 
concentration. A similar phenomenon can be observed in the conduction band. The highly 
structured density of states that can be observed for p = 0.02 erodes with increasing p ,  
Around E = 0, in the former band gap, an impurity band is formed. Both the integrated 
DOS and the width of the impurity band increase with increasing vacancy concentration. 
The impurity band consists predominantly of states localized on atoms whose bonds are 
unsaturated. The eigenfunctions are not localized on a single atom only, but cover several 
defects that are close neighbours. At half filling, the Fermi level lies in the middle of the 
impurity hand, so the transport properties of the system will be dominated by defects. A 
TU analysis has been performed for the impurity band, showing that all eigenstates within 
the hand are localized up to p = 0.08. As the impurity band is rather narrow, it is likely to 
exhibit a gap or a pseudogap once electron-electron interaction is introduced [E].  

We think that the properties observed for the model described in this chapter are 
universal for amorphous systems with dangling bonds and a band gap in the crystalline 
phase. Although the number of dangling bonds in any realistic model of a:Si is one to two 
orders of magnitude smaller, the domination of the transport properties by defects and the 
potential sensitivity to electron-electron interaction effects should also be observed there. 

6. Binary systems 

The simplest type of multicomponent system is the binary alloy AB. The Hamiltonian 
described in section 3 has been modified by the introduction of a site energy €6 # 0 for 
one type of atom. The CA parameter defines the zero of the energy scale; the €6 parameter 
has been set to 5V. For a binary alloy, the specification of the geometry not only requires 
knowledge of the topology of the system, but also the distribution of A and B atoms on 
the sites of the system. Starting from a crystalline honeycomb lattice with each A atom 
surrounded by three B atoms as nearest neighbours and vice versa (this is, e.g., the structure 
of BN), we generate the ideal CRN described in section 2 by removing A and B atoms that 
are nearest neighbours with equal probability p .  Obviously, this procedure creates A-A 
and B-B bonds, defects that are not present in the crystalline phase. We were particularly 
interested in the influence of these bond mismatch defects on the electronic structure. 

The DOS and the localization properties of the AB alloy have been computed from CRNs 
generated from lattices containing 1008 atoms ( R  = 118), 1792 atoms ( R  = 38), 2800 atoms 
( R  = 16) and 4032 atoms ( R  = 7). Figure 4 illustrates the TEL. analysis performed for this 
system. The scaling behaviour of the negative logarithm of the dimensionless conductance 
g is plotted as a function of energy. The energy interval (- 1. i) has been subdivided into 48 
bins. Within each bin the average of - Ing is plotted as a function of the system size L ,  L 
increasing from left to right. Whenever g increases with increasing system size, i.e. - Ing 
decreases with increasing L. the corresponding eigenstates are extended. In the opposite 
case, the wavefunctions show a localized character and the interval is labelled accordingly. 
For p = 0.02, localized states can be found at the top of the valence band and at the 
bottom of the conduction band. The alternation of localized and extended states observed 
for p = 0.04 and p = 0.08 will be resolved as soon as the DOS is studied. 
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Figure 4. Tu. analysis of the alloy model for Figure 5. The DOS of the alloy model for three different 
three different vacancy concentdons p :  the negative vacancy concentrations p .  Energy is in uRis of I IZ: 
logarithm of the dimensionless conductance as a ws is in arbihwy units. Ladized regions have been 
function afenergy. Energy is in uNts of IIZ. Localized shaded. 
intervals have been marked by an L. For delails see the 
text. 

The Dos for the vacancy concentrations listed above is presented in figure 5. For all 
vacancy concentrations, two impurity bands split from the top of the valence band and the 
bottom of the conduction band. The separation of the impurity bands from the bulk of the 
DOS is more evident for the valence band. As usual, regions containing localized states 
according to the TEL analysis have been shaded. At p = 0.02, all states within the impurity 
bands are localized. At p = 0.04, a transition from localized to extended states within 
the impurity bands can be observed where the impurity band DOS shows a local maximum. 
The regions connecting the impurity bands to the bulk of the DOS and the band edges close 
to the band gap still exhibit a localized behaviour. At p = 0.08, both the integrated DOS 
and the number of extended states within the impurity bands have considerably increased. 
The interval containing extended states within the impurity band is wider at the top of the 
valence band than at the bottom of the conduction band. 

What is the reason for the formation of these impurity bands and the transition from 
localized to extended states in these bands? To answer these questions, we have performed 
a population analysis [26]. With the charge order at site i and for an eigenstate la) of the 
Hamiltonian given by 

(4) 2 4: = (olli)(i[oc) =a, 

we can define the charge order corresponding to a set of sites by taking the sum of all 
q; for all i of the corresponding set of sites. We have computed the charge order for the 
following types of site: qm for A atoms connected to three B atoms, qBA for B atoms 
connected to three A atoms, ~ A A  for an A atom connected to one A atom and two B atoms 
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and qeB for a B atom connected to one B atom and two A atoms. The latter two charge 
orders refer to wrong bonds as described above. We have taken averages of these quantities. 
The charge order dominating in each interval is indicated in figure 6 for the three vacancy 
concentrations studied for this model. Each type of q is indicated by a different symbol. 
The bulk of the valence band is dominated by qm states, the bulk of the conduction band 
by states. The impurity band at the top of the valence band is dominated by q u ,  and 
the one at the bottom of the conduction band by qBB; q u  has a maximum at the top of 
the valence band, qBB a maximum at the bottom of the conduction band. Although the 
total number of wrong bonds is small, they dominate the impurity bands. There is a sharp 
jump in the character of eigenstates at the local minima of the DOS between the bulk of the 
specbum and the impurity bands. With increasing p ,  the number of wrong bonds increases: 
these can couple and form extended states. 

Th Koslowski and W von Niessen 
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The binary-alloy model does not only describe multicomponent systems (actually, the 
tight-binding parameters are appropriate for the two-dimensional layer compound BN) but 
has an interesting connection to interacting systems. Introducing on-site repulsion between 
electrons of different spin for the Hamiltonian described in section 3, the familiar Hubbard 
Hamiltonian [25,27,28] is obtained 

U measures the strength of the electron-electron inkraction, U is the spin index and niu 
the number operator for a u-spin electron at site i. In the unrestricted HameeFock (UHF) 
approximation equation (5) can be written as 
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and a similar equation for electrons with spin -U .  If the expectation value (n idC)  is known, 
equation (6) reduces to a one-electron problem. The solution of the one-electron problem 
by a procedure similar to the coherent-potential approximation is known as the Hubbard III 
approximation [28]. Identifying U(ni- , )  with EB recovers the binary alloy. In the large- 
U limit at half filling, the Hubbard Hamiltonian can be transformed into the Heisenberg 
model [29]. On a bipartite lattice at zero temperature, antiferromagnetism will be observed, 
corresponding to a bipartite decoration with A and B atoms. For a frustrated antiferromagnet 
(amorphous binary alloy), the ordering of the eigenstates of the mean-field (or binary-alloy) 
Hamiltonian can be easily understood the lowest occupied eigenstates can be described 
as u-spin electrons (A atoms) surrounded by three -a-spin electrons (B atoms), giving 
rise to a maximum antiferromagnetic coupling. These are followed by u-spin electrons (A 
atoms) with a single wrong bond, giving rise to a local ferromagnetic repulsion and thus a 
higher energy. The same argument holds for the unoccupied eigenstates of the Hamiltonian 
(6). So the analogy-which is by no means an identity-f the binary-alloy model and the 
Hubbard model in the IargeU limit helps us to understand the ordering of the energies and 
the origin of the impurity bands. It should be noted that the energies of the eigenstates of 
the Hamiltonian (6) do not describe the low-energy part of the spectrum of single-particle 
(and hole) excitations of the Hubbard model for the given choice of parameters accurately, 
because the formation of spin waves requires an energy much smaller than the band gap. 

7. Conclusions 

We have studied CRNS in two dimensions as a simple model for amorphous solids. The 
electronic properties-with a special emphasis on the localized or extended character of 
eigenstates-have been computed for a variety of tight-binding Hamiltonians. The ideal 
lattice with a single s- or p,-liie orbital on each site shows localization or a very small 
conductance at the top of the band and in addition at the Fermi level for a certain combination 
of parameters, similar to the results that Varga and F’ipek [30] have presented for a two- 
dimensional model of a:C [31]. The existence of at least one extended state for ideal CRNS in 
two dimensions has been proved rigorously. For s-like orbitals, the introduction of dangling 
bonds does not change the electronic structure significantly. 

Hybridization effects in a Hamiltonian that describes a CRN containing dangling bonds 
lead to the formation of a narrow impurity band in the middle of the gap that determines the 
transport properties of the system. The DOS and the localization properties of the impurity 
band are likely to be sensitive to electron-electron interaction effects. 

As a simple model for a multicomponent system, a binary alloy model--corresponding 
to the BN layer compound-has been studied. Impurity bands split off from both the 
valence band and the conduction band. The corresponding states are localized in the regime 
of small defect concentrations. With increasing p the integrated ws in the impurity bands 
increases, and a transition from a localized to an extended character of the eigenstates at the 
centre of the impurity bands is observed. This is a replay of the situation found in one-band 
models of Anderson localization. A population analysis reveals the binding situation. The 
bulk valence band is dominated by states where the A atoms are surrounded by three B 
atoms, the conduction band by states where the B atoms are surrounded by three A atoms. 
The valence impurity band is dominated by states where the A atoms see one wrong bond 
(pointing to another A atom), and the conduction impurity band by states where the B atoms 
see. one wrong bond. 
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The Hubbard Hamiltonian can in the UHF approximation-with further simplifications- 
be reduced to the binary-alloy Hamiltonian. In the large4 (Heisenberg-model) limit, an 
anology of the amorphous AB model with a frustrated antiferromagnet has been presented. 
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